Viviani’s Theorem

In Geometry, we proved Viviani’s Theorem. Individual groups’ lightbulb moments diffused across the room, ensuring that everybody had a chance to experience that giddy moment of discovery. Collaborative work to share knowledge, individual write-up to assess internal understanding.

I have been giving the students problems that I would find interesting. “Treat them like experts and they will become experts” is an unwritten mantra. Is there any justification for this? Am I prioritizing my intellectual enjoyment over the students’ needs? In any case, there are some outstanding proofs here:

IMG_0587IMG_0593

A great idea to use circles, but is it justified?

IMG_0590

Excellent attempt at dynamic proof without words:

IMG_0588

This student is thinking very precisely, but I have no idea what is going on:

IMG_0589

Equilateral triangles within equilateral triangles…

IMG_0591

As a starting point, this is ripe for extension. What about other properties of equilateral triangles? What about other triangles? What about other polygons? what about other dimensions?

A South African high-school student stumbled across a different invariant. His name is now immortalized in the Clough Conjecture.¬†Students began this journey the following lesson…

IMG_0585IMG_0584

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s